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Summary 14 

Snow distribution characterization is essential for accurate snow water estimation for water 15 

resource prediction from existing in-situ observations and remote sensing data at a finite spatial 16 

resolution. Four different observed snow distribution datasets were analyzed for Gaussianity. It 17 

was found non-Gaussianity of snow distribution is a signature of wind redistribution effect. 18 

Generally, seasonal snowpack can be well approximated by Gaussian distribution for fully snow-19 

covered area.   20 
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Abstract 21 

Seasonal snowpack is an important predictor of available water resources in the following spring 22 

and early summer melt season. Total basin snow water equivalent (SWE) estimation usually 23 

requires a form of statistical analysis that is implicitly built upon the Gaussian framework. 24 

However, it is important to characterize the non-Gaussian properties of snow distribution for 25 

accurate large-scale SWE estimation based on remotely sensed or sparse ground-based 26 

observations. This study quantified non-Gaussianity using sample negentropy, the Kullback–27 

Leibler divergence from Gaussian distribution, for field-observed snow depth data on the North 28 

Slope, Alaska, and three representative SWE distributions in the western US from the Airborne 29 

Snow Observatory (ASO). Snowdrifts around lakeshore cliffs and deep gullies can bring 30 

moderate non-Gaussianity in the open, lowland tundra of North Slope, Alaska, while the ASO 31 

dataset suggests that subalpine forests may effectively suppress the non-Gaussianity of snow 32 

distribution. Thus, non-Gaussianity is found in areas with partial snow cover and wind-induced 33 

snowdrifts around topographic breaks in slope and other steep terrain features. The snowpacks 34 

may be considered weakly Gaussian in coastal regions with open tundra in Alaska and alpine and 35 

subalpine terrains in the western US if the land is completely covered by snow. The wind-36 

induced snowdrift effect can be potentially partitioned from the observed snow spatial 37 

distribution guided by its Gaussianity. 38 

 39 

1 Introduction 40 

Modeling of the spatial variability of snow is important for large-scale earth surface modeling 41 

since atmospheric circulation is sensitive to snow cover presence (e.g., Aas et al., 2016; Meng, 42 

2017; Mott et al., 2015, 2017; Nitta et al., 2014; Younas et al., 2017). Since subgrid variability 43 

often causes appreciable bias in weather predictions, accurate snow cover quantification can 44 

potentially improve the predictability of weather, planetary boundary-layer evolution, convective 45 

cloud formation, and even tropical cyclogenesis (Santanello et al., 2018). Hence, the subgrid 46 

variability of snow cover has been incorporated into operational regional weather forecasting 47 

models such as the High-Resolution Rapid Refresh (HRRR) model (He et al., 2021). 48 

Observations of seasonal snow storage in mountainous areas through remote sensing and ground-49 

based measurements are a direct and reliable indicator of the water supply during the following 50 

spring season in downstream regions (e.g. Fleming et al., 2023; Sengupta et al., 2022). However, 51 

total basin snow water equivalent (SWE) estimation usually requires a statistical relationship 52 

such as the snow depletion curve (SDC), which correlates with observables such as the snow 53 

cover area fraction (SCF). Based on a study of the observed snow distributions in Reynolds 54 

Creek Experimental Watershed in Idaho, Luce et al. (1999) showed that one snow distribution 55 

can reasonably represent the SDC evolution for the rest of the season. Also, Luce and Turboton 56 

(2004) showed a high degree of similarity in nine years of dimensionless depletion curves 57 

measured in the same basin. Shamir and Georgakakos (2007) demonstrated the consistency of 58 

SDC over a season in the American River using a distributed model. The subseasonal and 59 
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interseasonal consistency in SDCs suggests the possibility for subgrid snow characterization as 60 

well as SWE estimation from SCF data such as the MODIS product (Hall et al., 2006). 61 

As remote sensing technologies advance, seasonal snow distribution characterization becomes 62 

more approachable with multi-sensor methods. For example, Tarricone et al. (2023) analyzed 63 

three Interferometric Synthetic Aperture Radar (InSAR) image pairs to assess SWE evolution 64 

using the snow-focused multi-sensor method with Uninhabited Aerial Vehicle Synthetic 65 

Aperture Radar (UAVSAR) and an L-band InSAR data as well as optical fractional snow-66 

covered area (SCA) information. However, to estimate the total basin SWE in water resource 67 

management practices, statistical empirical relationships are required to fill gaps in the spatial 68 

and temporal resolutions—even when using these remote sensing observations (Tsang et al., 69 

2022). For example, Meloche et al. (2022) assumed log-normal distribution to represent the sub-70 

pixel variability of remotely sensed data. Thus, uncertainty and subgrid variability must be 71 

accounted for when using statistical characterization in SWE estimation. 72 

The most popular choice for the probability density function (PDF) of snow is log-normal 73 

distribution, which inherently eliminates negative snow depth (Donald et al., 1995; Liston, 2004; 74 

and many others). Brubaker and Menoes (2001) chose a beta distribution, while Kolberg and 75 

Gottschalk (2006) selected a two-parameter γ-distribution. Although these common distributions 76 

are in the exponential family, they were primarily chosen for convenience. Indeed, the 77 

representativeness of these parametric probability distributions remains questionable for different 78 

landscapes and snowpack ages (e.g., Skaugen & Randen, 2013; Egli & Jonas, 2009; He, Ohara, 79 

& Miller, 2019). Moreover, these approaches for bounded distributions may not work for 80 

evolving snowpacks with partial SCA where zero values are present in the probability domain. 81 

In theory, since the landing location of each snow particle fallen from the atmosphere is 82 

considered an independent and identically distributed (iid) random variable, the resulting snow 83 

depth or SWE distribution should asymptotically approach a Gaussian distribution due to the 84 

central limit theorem. He, Ohara, and Miller (2019) reported Gaussian snow distributions in 85 

many of the forested, fully snow-covered areas during the peak snow season using airborne Light 86 

Detection and Ranging (LiDAR) observations in the Snowy Range, Wyoming. This implies the 87 

presence of both systematic (non-Gaussian) and random (Gaussian) mechanisms in snow 88 

accumulation and ablation processes. Therefore, it is possible to identify the potential factors as 89 

“signals” that make the snow distribution deviate from a Gaussian distribution by analyzing the 90 

resultant snow distributions. 91 

This study applies negentropy to analyze the non-Gaussianity of snow distributions in Arctic 92 

tundra, as well as alpine and subalpine landscapes in North America. Negentropy measures the 93 

departure in entropy between a sampled distribution and Gaussian distribution of identical 94 

variance and mean. Signals of interest (e.g., systematic snowdrift patterns) can be extracted as 95 

non-Gaussian components because pure random noise asymptotically becomes Gaussian in 96 

theory. This is the main idea of independent component analysis (ICA; Hyvärinen et al., 2000). 97 

This work presents the quantified non-Gaussianity of the observed snow distributions through a 98 

variety of snow distribution data, including intense direct hand measurements within 30-m grids 99 

using a probe, and indirect measurements using a snowmachine-attached ground-penetrating 100 

https://doi.org/10.5194/egusphere-2024-395
Preprint. Discussion started: 12 April 2024
c© Author(s) 2024. CC BY 4.0 License.



4 

 

radar (GPR), UAV-based photogrammetry, as well as the Airborne Snow Observatory (ASO) 101 

SWE products. 102 

2 Methods 103 

2.1 Negentropy 104 

To measure the non-Gaussianity of any data, we implement the information-theoretic metric of 105 

negentropy as the objective function since negentropy is equal to the Kullback–Leibler 106 

divergence between 𝑝𝑥 and a Gaussian distribution with the same mean and variance as 𝑝𝑥. 107 

There is a well-known proposition that Gaussian density has the largest information entropy 108 

among all unbounded distributions with the same first and second-order statistics. As such, the 109 

non-Gaussianity of an observed distribution can be quantified by negentropy J, which is defined 110 

as follows (Hyvärinen et al., 2000): 111 

𝐽(𝑋) = 𝑆(𝑋𝑔𝑎𝑢𝑠𝑠) − 𝑆(𝑋)     (1) 112 

where S is the information entropy of X. The information entropy can assume a diversity of 113 

metrics ranging from the most general capturing microphysical event-scale codependence in 114 

nonlinear statistical mechanics (Perdigão 2018) or simply assuming basic event-scale 115 

independence in classical information theory (Shannon (1948) statistical entropy). For the 116 

purpose of this study, we take the latter simple form, which is defined as: 117 

𝑆(𝑋) = − ∫ 𝑝𝑥(𝜂) log[𝑝𝑥(𝜂)]𝑑𝜂.    (2) 118 

The Edgeworth expansion (Edgeworth, 1905) can provide an approximation for a PDF of X, as 119 

follows: 120 

𝑝𝑥(𝑋) =
𝜙(𝑈)

𝜎
[1 +

𝜅3

6
𝐻3(𝑈) +

𝜅4

24
𝐻4(𝑈) +

𝜅3
2

72
𝐻6(𝑈) + ⋯ ]  (3) 121 

where 122 

𝑈 = standardized random variable of X 123 

𝐻𝑘(𝑈) = Chebyshev-Hermite polynomials 124 

𝜙(𝑈) = standard normal density 125 

𝜅𝑘 = k-th order cumulant of U. 126 

Substituting the Edgeworth series into the negentropy definition, Comon (1994) obtained the 127 

analytical expression: 128 

𝐽(𝑋) =
1

12
𝜅3

2 +
1

48
𝜅4

2 +
7

48
𝜅4

4 −
1

8
𝜅3

2𝜅4 + 𝑂(𝑛−2).   (4) 129 

This is the estimator of negentropy at fourth-order cumulant. In practice, a more intuitive 130 

approximation is commonly used, as follows: 131 

𝐽(𝑋) =
1

12
skew(𝑈)2 +

1

48
kurt(𝑈)2    (5) 132 
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where skew and kurt are the skewness and kurtosis of standardized variable, U, respectively. 133 

The sample estimation of the higher-order moment and cumulant (e.g., skew and kurtosis 134 

coefficients) is known to be sensitive to the presence of outliers. In this study, the interquartile 135 

range (IQR) method was adopted for outlier removal with a minimum removal that lies outside 136 

the range of three times IQR. 137 

While negentropy metrics and corresponding Edgeworth approximations have been previously 138 

explored and further developed in atmospheric sciences and in physics, including derivations and 139 

implementations to higher-order distributions, elaborate numerical and analytical estimators 140 

(Pires and Perdigão 2007, Perdigão 2010, Perdigão 2017), the present study brings a simplified 141 

treatment not yet explored in Hydrology and tailored for swift and seamless integration within 142 

hydrological and water resource systems investigations. 143 

2.2 Data collection 144 

We analyzed four types of data with different collection methodologies at various scales in this 145 

study. The first is manual snow depth surveys using a GPS-aided snow probe (Magnaprobe; 146 

Sturm & Holmgren, 2018), the second is snow depth transects using a snowmachine-attached 147 

GPR, the third is snow depth maps using UAV-based photogrammetry, and the last is the SWE 148 

product of the ASO. The first three datasets are for the open tundra in the Arctic Coastal Plain 149 

(ACP) of Alaska while the ASO data are for the alpine and subalpine regions of the continental 150 

USA. Detailed data specifications associated with the collection methodologies will be presented 151 

in Results section below. Figure 1 displays the map of the snow depth surveys in North Slope, 152 

Alaska, USA. 153 

 154 

Figure 1: Map of the snow survey locations in Alaska, USA. 155 

3 Results 156 

3.1 Manual snow surveys at Teshekpuk, North Slope, Alaska (May 2022) 157 

Snow depth data were collected using a Magnaprobe (Sturm & Holmgren, 2018) in five 30 x 30-158 

m grids with 1 m grid spacing north of Teshekpuk Lake, North Slope, AK, in May 2022. The 159 

GPS location of each measurement was automatically recorded. Figure 2 presents the 160 
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interpolated snow depth distributions and corresponding histograms (right columns) in five areas 161 

near Teshekpuk. The observer measured the point scale snow depth at approximately every 1 m 162 

along a line toward flags placed 1 m apart on the surface. Since the data points were selected 163 

from undisturbed snow, the locations are unevenly distributed despite the snowpacks generally 164 

being highly hardened by wind. The relative spatial locations are considered accurate since the 165 

operator stood on the same side of the probe and followed pre-marked lines based on the tape 166 

measure; however, the absolute plotted coordinate in the figures may not be trustworthy due to 167 

the GPS horizontal accuracy < 3 m. 168 

The graphics in the left column of Figure 2 present the point depth observation locations and 169 

interpolated snow depth distributions using the nearest distance method. The number of data 170 

points denoted by the black dots is n=951 (TL1-1), n=925 (TL2-1), n=904 (TL3-1), n=927 171 

(Wadepiper Pond), and n= 960 (Wadepiper Basin).  172 

The corresponding snow depth histograms and three fitted distributions are displayed in the right 173 

column. The statistics mean, standard deviation, skew coefficient, and negentropy (J) are 174 

reported on the top part of each graph. In general, the snow depth distributions in these areas are 175 

almost Gaussian distributions since the computed negentropy is small. However, the negentropy 176 

of snow distribution affected by wind-induced snowdrift (sastrugi) on frozen lakes is larger than 177 

the tundra covered by sedge and herbaceous vegetation. In practice, the non-Gaussianity of 178 

seasonal snow depth may have been negligible in the coastal open tundra (including frozen open 179 

waters) in the Teshekpuk study area in May 2022. 180 

https://doi.org/10.5194/egusphere-2024-395
Preprint. Discussion started: 12 April 2024
c© Author(s) 2024. CC BY 4.0 License.



7 

 

 181 

Figure 2: Manual snow distributions in the Teshekpuk Lake area, North Slope, Alaska (May 182 

2022) and corresponding histograms with fitted probability density functions (PDFs). J denotes 183 

the computed negentropy.  Snow depth histograms in open tundra in 30 m x 30 m squares are 184 

generally categorized as “weak-non-Gaussian.” The approximated center coordinates of the grids 185 
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are 70.738°N, 153.970°W (TL1-1), 70.740°N, 153.956°W (TL2-1), 70.739°N, 153.928°W (TL3-186 

1), 70.751°N, 153.870°W (Wadepiper Pond), and 70.746°N, 153.854° W (Wadepiper Basin). 187 

3.2 Snow depth surveys using GPR along multiple transects in Inigok, North Slope, 188 

AK (April 2019) 189 

The Inigok area of North Slope, Alaska (70.001° N, 153.068° W) is characterized by paleo sand 190 

dunes (Carter, 1981), hydro-geomorphological processes, and permafrost landforms such as 191 

thermokarst lake formation and drainage. The landscape is characterized by relatively steep 192 

terrain and substantial wind-induced snowdrifts (deeper than 5 m), especially around lake shores 193 

and drainage channels (e.g., Rangel et al., 2023). 194 

Snow depth surveys using a GPR are particularly effective for deep-snow areas since the 195 

Magnaprobe is only 1.5 m long. Considering the lower limit of the selected GPR antenna, we 196 

collected several GPR transects (Malå ProEx, 800 MHz, GuidelineGeo, Sundbyberg, Sweden) 197 

around Inigok, where the snowpack was deeper than in the coastal area. The antenna was placed 198 

on a sled towed by a snowmachine traveling < 5km h-1. The effect of compaction by the 199 

snowmachine was considered negligible because the snow was highly wind-packed and therefore 200 

was not affected by the weight of the snowmachine during data collection. The GPR data were 201 

processed in ReflexW (Sandmeier Software, Karlsruhe, Germany) using a low frequency noise 202 

removal (dewow) and a linear gain with topographic correction adapted from the ArcticDEM 203 

(Rangel et al., 2023b). Maps of snow depth estimated from the GPR transects are shown in 204 

Figure 3. The line color denotes the observed snow depth (the darker, the deeper). A substantial 205 

snowdrift developed near the lakeshore’s banks due to its steep topography. 206 

Figure 4 displays the histograms of GPR snow depth data in Inigok, North Slope, Alaska, in May 207 

2019 when using (A) all transect data and (B) the frozen lake sections only. The snow depth 208 

histogram of all transects shows strong non-Gaussianity due to a mix of steep and flat terrain. 209 

However, the histogram of the partial dataset only for the frozen lakes shows much weaker non-210 

Gaussianity. In fact, snow distribution after removing the deep-snow parts can be reasonably 211 

approximated by the Gaussian distribution with a negentropy of 0.037, which is the same level as 212 

Wadepiper Pond (Figure 2) in the previous section (J = 0.040). Therefore, the snowdrift due to 213 

steep terrain is considered a major source of non-Gaussianity in snow depth in open tundra. 214 
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 215 

Figure 3: Snow depth surveys using GPR along multiple transects in Inigok, North Slope, Alaska 216 

(27 and 28 April 2019). The approximated center coordinates of the maps are 153.105W 217 

70.005N (INI04 & INI01), 152.949W 69.993N (Lonely wolf), 153.274W 69.992N (Deep basin), 218 

and 153.032W 69.942N (Three creatures & Independent fox). 219 

 220 

Figure 4: Snow depth histograms of GPR snow survey data from Inigok, North Slope, Alaska 221 

(April 2019) using A) all transects and B) sections on frozen lake only. Snow distributions in the 222 

Inigok area are highly non-Gaussian, while the frozen lake subset shows weak non-Gaussianity. 223 

 224 

3.3 Snow depth distribution based on UAV footage of a drained lake basin within 225 

the CALM 1-km grid near Utqiaġvik, AK (May 2019) 226 

Figure 5 (left panel) presents the observed snow distribution of a drained thermokarst lake basin 227 

referred to as Central Marsh, part of the Circumpolar Active Layer Monitoring (CALM) 228 

Network located east of Utqiaġvik, Alaska. The snow depth was estimated by differentiating the 229 

snow surface elevation and the snow-free ground elevation using UAV surveys with the 230 

photogrammetry technique. The images were collected on August 4, 2019 (snow-free), and April 231 

15, 2019 (snow-covered), using a Phantom 4 UAV (P4RTK). Images were post-232 

processed/georeferenced to NAD83 Zone 4 North in ellipsoid heights using a propeller aeropoint 233 
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and Pix4D (version 4.3.33 for the April survey, 4.4.12 for the August survey) at 0.25 m spatial 234 

resolution (Nichols, 2020). The vertical accuracies of these measurements are 18 cm and 10 cm 235 

for the April and August surveys, respectively. The horizontal resolution for the snow depth is 1 236 

m. 237 

 238 

The CALM site is situated in the ACP in northern Alaska, which has typical complex 239 

terrain due to the recently drained thermokarst lake with sparse or negligible vegetation and well-240 

developed polygons. There is an obvious smoothed bluff in the center of the domain, and the 241 

west side of this bluff tapers into the drained lake basin. The incised drainage channels cause 242 

steep land features that capture sizable snowdrifts in the southern part. In the southern portion of 243 

the area, the polygons are formed by ground surface cracks with ice wedge development beneath. 244 

 245 

The negentropy distribution in the moving window may be obtained from this gridded snow data 246 

at a very high spatial resolution. The right panel of Figure 5 presents the computed negentropy 247 

map in the CALM area with a 30-m moving window. Overall, non-Gaussianity in the CALM site 248 

was found to be weak—even with the smoothed bluff and despite high snow depth. However, as 249 

whiter parts in right panel of Figure 5 are found along the drainage channels, topographic 250 

discontinuity around the incised gully seems to cause significant non-Gaussianity. Additionally, 251 

vegetation patches may bring spotty non-Gaussianity in the northern part of the area. Conversely, 252 

since the southern parts covered by the polygons except the drainage channels show darker color 253 

(J <0.025), the ground surface polygon does not make snow distribution non-Gaussian. Overall, 254 

snowpack in the coastal parts of the ACP can reasonably be approximated by Gaussian 255 

distribution since most of the CALM area showed a small negentropy of less than 0.2. 256 

 257 

Figure 5: Snow depth distribution based on UAV photogrammetry and the computed negentropy 258 

distribution of 30-m moving windows in a drained lake basin in the CALM 1-km grid (71.3026° 259 

N, 156.6008°W) near Utqiaġvik, Alaska. 260 

Figure 6 presents the snow depth histogram, which looks like a Gaussian distribution with a long 261 

tail due to snowdrift around the gullies in the CALM grid. In fact, when the deep snowdrifts of 262 
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the gully and the bluff are removed from the samples, the histogram more closely resembles a 263 

Gaussian distribution (see the right panel in Figure 6). 264 

 265 

Figure 6: Snow depth histogram based on the UAV photogrammetry of a drained lake basin in 266 

the CALM 1-km grid near Utqiaġvik, Alaska. Removing the deep snow parts caused by wind-267 

induced snowdrift results in a near-perfect fit by Gaussian distribution. 268 

3.4 SWE products based on ASO data for the selected watersheds 269 

SWE is a stable and direct indicator of snow/water distribution in landscapes. As such, the SWE 270 

products from the Airborne Snow Observatory (ASO) were selected (Painter et al., 2016) to 271 

examine the Gaussianity of snow distributions in different climate zones and landscapes with 272 

alpine to subalpine snowpack. The snow depth and SWE distributions were estimated from the 273 

coupled imaging spectrometer and scanning LiDAR, then combined with distributed snow 274 

modeling (including snow density simulation). The ASO snow products are considered one of 275 

the most comprehensive instantaneous snow distribution estimations at fine resolution (50 m). 276 

We used the processed snow product to characterize the medium-scale snow distribution with the 277 

same outlier treatment (IQR method) as described above. 278 

The analysis of three representative SWE datasets in the western US is presented. These include 279 

Upper Tuolumne River watershed in California (USCATB, April 3, 2013), East River watershed 280 

above Gunnison, Colorado (USCOGE, March 31, 2018), and the Olympic Mountains in 281 

Washington (USWAOL, March 29, 2016). 282 

3.4.1 Tuolumne River Watershed, California 283 

Figure 7 presents the composite graphics of the data and the analysis results for the Upper 284 

Tuolumne River watershed on April 3, 2013. Panel A shows the SWE distribution estimated by 285 

the ASO, while panel B visualizes the normalized SWE histogram or PDF within the entire 286 

domain with the fitted theoretical distributions. Panels C and D are the negentropy distributions 287 

of the SWE within 1500-m moving windows with and without partially snow-covered cells. 288 

Panel E shows the NLCD 2011 land cover map for reference. The watershed (1175 km2) is one 289 

of the drainages to the California Central Valley through the Hetch Hetchy reservoir in the 290 

southern Sierra Nevada Mountain Range. The boundary of the catchment is mostly comprised of 291 
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steep rocky alpine terrain (which contributes to the attractive land features of Yosemite National 292 

Park), whereas the bottom of the valley is relatively flat due past glacial processes. The snow 293 

distribution (panel A) shows a clear relationship with elevation, while the SWE barely exceeded 294 

1 m during the observation period in peak snow season. The overall SWE histogram (panel B) 295 

illustrates strong non-Gaussianity because of snow-free and shallow accumulation areas in the 296 

watershed (bounded distribution effect). 297 

 298 
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Figure 7: (A) SWE distribution based on ASO data of the Upper Tuolumne River Basin, 299 

California, USA from April 3, 2013 (USCATB, 37.461°N, 119.494°W); (B) normalized SWE 300 

histogram; (C) negentropy map of the SWE within 1500-m moving windows; (D) negentropy 301 

map of only fully snow-covered cells; (E) NLCD 2011 land cover map. 302 

However, the local negentropy map with moving windows (panel C) shows small non-303 

Gaussianity except in the low-elevation areas. In fact, the majority of high non-Gaussianity cells 304 

are from partially snow-covered cells. When the partially snow-covered cells are removed in 305 

panel D, the local negentropy falls by less than 0.15 in most of the watershed. Therefore, the 306 

bounded distribution effect in the probability domain from the partially snow-covered cells 307 

brings substantial non-Gaussianity into the snow distribution. 308 

3.4.2 East River, Colorado 309 

The ASO dataset of the East River above Gunnison, Colorado (USCOGE) was selected as a 310 

representative basin in the Rocky Mountains region. This dataset includes the U.S. Department 311 

of Energy (DOE)’s East River community observatory, where comprehensive field data have 312 

recently been collected (Kakalia et al., 2020). The data domain, which does not agree with the 313 

watershed boundary, is approximately 1670 km2 with the elevation ranging from 2,343m 314 

(Gunnison) to 3,901 m. Figure 8 displays the corresponding analysis results of the East River 315 

area on March 31, 2018. 316 
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 317 

Figure 8: (A) SWE distribution based on ASO data for the East River watershed above Gunnison, 318 

Colorado, USA from March 31, 2018 (USCOGE, 39.037°N 106.978°W); (B) normalized SWE 319 

histogram; (C) negentropy map of the SWE within 1500-m moving windows; (D) negentropy 320 

map of only fully snow-covered cells; (E) NLCD 2011 land cover map. 321 

Besides the obvious bounded distribution effect of partially snow-covered cells, this case study 322 

illustrates the non-Gaussianity induced by the steep topographic features around the high peaks 323 

in the Rocky Mountains. Also, since the lower negentropy (darker colored) parts in panel D 324 
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generally agree with the evergreen and deciduous forest cover extent in the NLCD land cover 325 

map in panel E, the subalpine forest may reduce non-Gaussianity in snow distribution. However, 326 

the general characteristics of the sample’s negentropy distribution in Upper Colorado are 327 

consistent with the Upper Tuolumne River watershed in the Sierra Nevada Mountain Range. 328 
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3.4.3 Olympic Mountains, Washington 329 

The last example of snow non-Gaussianity quantification is the Olympic Mountains in 330 

Washington, USA, which represent the Northern Pacific Coastal Range under strong oceanic 331 

influence. The elevation ranges from sea level to 2430 m. The Olympic Mountains consist of a 332 

cluster of steep-sided peaks, heavily forested foothills, and incised deep valleys. The ASO data 333 

have a large spatial coverage (5,330 km2) when compared to the other two ASO datasets 334 

presented here. 335 

 336 

Figure 9: (A) SWE distribution based on ASO data for the Olympic Mountains, Washington, 337 

USA from March 29, 2016 (USWAOL, 47.792°N 123.650°W); (B) normalized SWE histogram; 338 
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(C) negentropy map of the SWE within 1500-m moving windows; (D) negentropy map of only 339 

fully snow-covered cells; (E) NLCD 2011 land cover map. 340 

The black areas in the high elevation range in panel A are the approximate glacier extent 341 

excluded from the analysis (Painter et al., 2018). A large fraction of partially snow-covered cells 342 

also introduces non-Gaussianity in SWE in this region. Meanwhile, dense evergreen forests in 343 

the Olympic Mountains seem to effectively reduce the non-Gaussianity of SWE above the snow 344 

line during the ASO scanning period. Overall the non-Gaussianity of the snowpack may be 345 

considered small when compared to the other two examples, which is likely due to denser forest 346 

cover. Presumably, the vegetation cover minimizes the wind-induced snow redistribution process 347 

and makes the snow distribution more Gaussian. These characteristics—i.e., non-Gaussianity in 348 

partially snow-covered areas and high Gaussianity in forested areas—are common features of the 349 

SWE distributions throughout the western US. 350 

4 Discussion 351 

The sample negentropy values presented here are generally consistent with each other despite the 352 

variety of data collection methods used at different scales. The level of random noise in the 353 

datasets depends on the data collection methods. Among the datasets discussed here, one may 354 

anticipate that the ASO data have the largest Gaussian bias due to multiple remote sensing, 355 

resampling, assimilating, and modeling procedures covering remarkable spatial coverages with 356 

uniform data quality. The UAV-based LiDAR data at the North Slope CALM site are expected 357 

to have a noticeable random bias with a vertical accuracy of approximately 12 cm. The GPR 358 

snow depth observations should have a smaller but appreciable Gaussian bias due to snow 359 

quality variation and non-flat snow surface elevation (antenna angle vibration), although the 360 

continuous measurement minimizes the random relative error in the snow depth estimation. The 361 

hand-measured snow depth data using a probe may include the least Gaussian bias, while the 362 

sampling spacing was not uniform and in addition, due to relative poor spatial positioning 363 

control with the Magnaprobe’s onboard GPS unit. Despite these differences, it is encouraging 364 

that the quantified Gaussian levels were comparable and consistent since they share common 365 

features. 366 

The stability of the sample estimator of negentropy may be a potential issue, especially when the 367 

sample size is small. Additionally, since the higher-order statistical moments are sensitive to the 368 

presence of outliers in the sample, an outlier removal filter is recommended for large samples. 369 

The IQR method with a threshold of 3 IQR above the third quarter (Q3), which is much stricter 370 

than the usual threshold (typically 1.5 IQR), has been applied for the UAV photogrammetry data 371 

and the ASO datasets for computational stability. Even with the large threshold (small outlier 372 

removal), the proposed method using negentropy appears to be effective in characterizing the 373 

Gaussianity of snow distribution, which has been a common implicit assumption for existing 374 

gridded data and models. This study visualized the limitation of such a common distribution 375 

assumption for snow distribution, specifically for areas with partial snow cover. 376 

To summarize the analyses presented here, five categories of Gaussianity were defined and 377 

associated with a magnitude of sample negentropy value (see Table 1). Most of the fully snow-378 
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covered areas fell into the category “almost Gaussian,” with a negentropy less than 0.03. Notably, 379 

a negentropy less than 0.01 is considered nearly perfect Gaussian, as can be seen in the previous 380 

sections. 381 

The Gaussianity characterization of snow distribution appears to be useful in distinguishing the 382 

snowdrift-affected areas using the sample negentropy. Simultaneously, this finding can justify 383 

the implicit Gaussian assumption for snow distribution for overall SWE estimation, particularly 384 

for snowpack characterization from remotely sensed information. For instance, the effect of 385 

higher-order statistical moments can be negligible in most fully snow-covered areas. Conversely, 386 

some additional statistical treatment for higher order statistics may be required for the areas with 387 

the non-Gaussian effects around snow lines, open wind-swept areas, and sharp terrains.  388 

Additionally, since consistent pattern in skew coefficient was not identified from the snow 389 

datasets, the commonly-used log-normal distribution may not be suitable for those areas. 390 

Table 1: Summary of the analysis using the sample negentropy. 391 

Class Negentropy  Landscape & land cover type Examples 

Strong non-

Gaussian 
0.2 < J 

Partially snow-covered areas, 

mixture of landscapes (steep-

flat)  

CALM, Inigok, Upper 

Tuolumne, East River, 

Olympic Mountains 

Non-Gaussian 0.1 < J ≤ 0.2 Snowdrift around steep terrain CALM 

Weak non-

Gaussian 
0.03 < J ≤ 0.1 

Snowdrift on a frozen lake, 

vegetation cluster 
Teshekpuk, Inigok, CALM 

Nearly Gaussian 0.01 < J ≤ 0.03 
Most of the uniform terrain in 

open tundra and alpine forest 

Teshekpuk, CALM, Upper 

Tuolumne, East River, 

Olympic Mountains 

Gaussian J ≤ 0.01 
Open tundra (sedge, polygons), 

most forested areas 

Teshekpuk, Upper Tuolumne, 
East River, Olympic 

 392 

5 Conclusions 393 

A Gaussian snow distribution is a common underlying assumption for finite scale models or 394 

gridded datasets. The present study tested this assumption using the sample negentropy of 395 

various snow data. We found two main sources of non-Gaussianity: (1) partial snow cover effect 396 

(bounded distribution) and (2) wind-induced snowdrift effect around steep terrain features. The 397 

second effect may amplify the first one in wind-swept alpine areas since snow erosion remains 398 

shallow on rocky ridges and peaks. The snowdrift around lakeshore cliffs and deep gullies can 399 

bring moderate non-Gaussianity in the open tundra of North Slope, Alaska. However, the wind-400 
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packed snow in the coastal plain region of the North Slope may generally be categorized as 401 

weakly Gaussian during mid to late winter due to the continuous snow cover. This implies that 402 

the non-Gaussianity of the snowpack may not be neglected during the snow accumulation season 403 

and late spring season. Interestingly, small ground surface features (e.g., low-centered and high-404 

centered ice wedge polygons) make snow distribution more Gaussian, while snowdrift (snow 405 

dunes) on a flat frozen lake seems to be less Gaussian than on tundra or in a drained lake basin. 406 

Our analyses of the ASO SWE products reinforced the findings for snowpacks on the tundra. 407 

Although SWE data was chosen instead of snow depth for practical reasons, the common 408 

features in non-Gaussianity remain valid. Additionally, the snow diffuser effect of forests was 409 

illustrated in three representative areas in the western US. This effect was reported by He et al. 410 

(2019) based on airborne LiDAR snow depth measurements on the Snowy Range, Wyoming, 411 

USA. Hence, it is likely that vegetation cover generally makes snow distribution more Gaussian 412 

in the snow accumulation process; however, further verification of this relationship is 413 

recommended. 414 

Overall, a Gaussian distribution is a suitable approximation for snow spatial distribution when 415 

the ground is completely covered by snow. Higher-order statistics associated with landscape type 416 

may potentially improve the SWE estimation in wind-swept open terrain and near snow lines. 417 

The level of non-Gaussianity will determine the choice of statistical tool to correct the systematic 418 

bias in snow measurements. Meanwhile, this study suggests the possibility of partitioning the 419 

extent of wind-induced snowdrifts by means of independent component analysis (Comon et al., 420 

2010). 421 
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